Tuesday 20 November 2018

Journal of Nanotechnology Open Access

Assembly and Study of Mesenchymal Stem Cells on Controlled Chemistry Surfaces

Batoul Hamieh, Cristina Vochitoaia, Halima Alem, Emmanuel Guedon, Tayssir Hamieh and Joumana Toufaily 

Abstract:

The cell responds to the physical constraints exerted by its environment by a set of mechanisms grouped under the term of mechanotransduction. These processes involve the molecules involved in cell adhesion, the cytoskeleton and the nucleus. These environmental constraints, whether related to the rigidity of the support, to its topography or to the nature of its surface chemistry, will modulate the cellular morphology and impact the behavior of the cell. In order to study this influence of the support, we have seeded bone marrow mesenchymal stem cells from a primary culture of a 24 years old individual on virgin mica surfaces or treated homogeneously with natural molecules (fibronectin and the cyclic RGD peptide) or with polyelectrolyte multilayers (five cycles of Chitosan / PAA or Chitosan / PSS). We then studied the morphology, proliferation and differentiation of these cells after 12 days of culture. As a result, bone marrow mesenchymal stem cells adhere to all surfaces, whether treated or not, and although they are less spread on virgin surfaces, they adopt a fibroblastic type morphology similar to their physiological phenotype. Their percentage of confluence varies significantly depending on the surface treatment used. Indeed the maximum confluence was observed for the surfaces grafted with fibronectin (93.25 ± 2.75%) whereas the surfaces treated with the polyelectrolyte multilayers have much lower confluence percentages (61.00 ± 4.08% for the chitosan / PAA couple) and 54.75 ± 1.75% for the Chitosan / PSS couple), mainly due to cell latency at the beginning of culture. Finally, cells cultured on our surfaces do not respond to any of the three Oil Red O, Alcian Blue or Alizarin Red S stains, suggesting a lack of differentiation in the adipogenic, chondrogenic or osteogenic pathways induced by these surfaces. Thus, the control of the support chemistry alone does not allow control of cell differentiation.

No comments:

Post a Comment

Lifestyle is a threat to gut bacteria: Ötzi proves it, study shows

The intestinal microbiome is a delicate ecosystem made up of billions and billions of microorganisms, bacteria in particular, that support ...